Lipid transmembrane asymmetry and intrinsic membrane potential: two sides of the same coin.
نویسندگان
چکیده
Sides of the Same Coin Andrey A. Gurtovenko*,† and Ilpo Vattulainen*,‡ Computational Laboratory, Institute of Pharmaceutical InnoVation, UniVersity of Bradford, Bradford, West Yorkshire BD7 1DP, U.K., Institute of Physics, Tampere UniVersity of Technology, P.O. Box 692, FI-33101 Tampere, Finland, Helsinki UniVersity of Technology, P.O. Box 1100, FI-02015 HUT, Finland, and MEMPHYS-Center for Biomembrane Physics, UniVersity of Southern Denmark, Odense, Denmark
منابع مشابه
Membrane potential and electrostatics of phospholipid bilayers with asymmetric transmembrane distribution of anionic lipids.
It is well-established that native plasma membranes are characterized by an asymmetric distribution of charged (anionic) lipids across the membrane. To clarify how the asymmetry can affect membrane electrostatics, we have performed extensive atomic-scale molecular dynamics simulations of asymmetric lipid membranes composed of zwitterionic (phosphatidylcholine (PC) or phosphatidylethanolamine (P...
متن کاملIntrinsic potential of cell membranes: opposite effects of lipid transmembrane asymmetry and asymmetric salt ion distribution.
Using atomic-scale molecular dynamics simulations, we consider the intrinsic cell membrane potential that is found to originate from a subtle interplay between lipid transmembrane asymmetry and the asymmetric distribution of monovalent salt ions on the two sides of the cell membrane. It turns out that both the asymmetric distribution of phosphatidylcholine (PC) and phosphatidylethanolamine (PE)...
متن کاملMolecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers
Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...
متن کاملAsymmetry of lipid bilayers induced by monovalent salt: atomistic molecular-dynamics study.
Interactions between salt ions and lipid components of biological membranes are essential for the structure, stability, and functions of the membranes. The specific ionic composition of aqueous buffers inside and outside of the cell is known to differ considerably. To model such a situation we perform atomistic molecular-dynamics (MD) simulations of a single-component phosphatidylcholine lipid ...
متن کاملThe effect of asymmetric surface potentials on the intramembrane electric field measured with voltage-sensitive dyes.
Ratiometric imaging of styryl potentiometric dyes can be used to measure the potential gradient inside the membrane (intramembrane potential), which is the sum of contributions from transmembrane potential, dipole potential, and the difference in the surface potentials at both sides of the membrane. Here changes in intramembrane potential of the bilayer membranes in two different preparations, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 129 17 شماره
صفحات -
تاریخ انتشار 2007